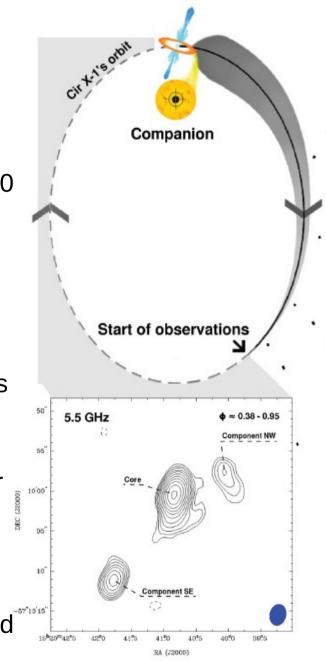
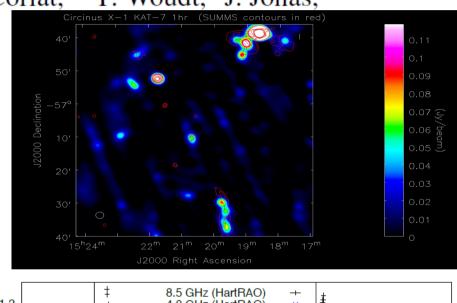

SALT Observations of Circinus X-1 and SXP1062

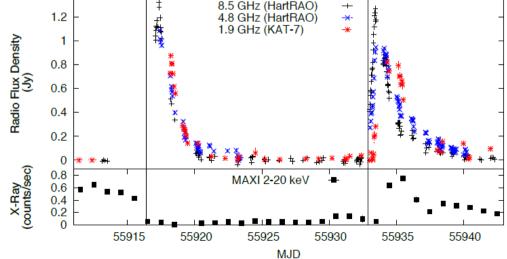
Matthew Schurch¹, ThunderKAT Multi-wavelength team ¹ACGC, University of Cape Town ²Nagoya University


Matthew.schurch@gmail.com SALT Science Day North West University – 11th November 2013

Brief History of Cir X-1

- An extremely peculiar X-ray binary.
- Rediscovery of bursting X-ray behaviour in May 2010 (Papitto et al. 2010) confirms Neutron star class binary.
- P_{orb}= MJD43076.27+16.57913n+0.0000421n² (HartRAO, George Nicolson). *e*=0.45 (Jonker et al. 2007).
- Highly reddened optical counterpart with magnitudes V=21.4 to K=11.0.
- Optical counterpart still unclassified possibly 3-5M $_{\odot}$ subgiant or $10M_{\odot}$ supergiant (Jonker et al. 2007).
- Radio jet, inclination angle ~5° (Fender and Hendry 2000)
- System is similar to BeXRBs, but with a lower B-field due to non detections of pulsations.

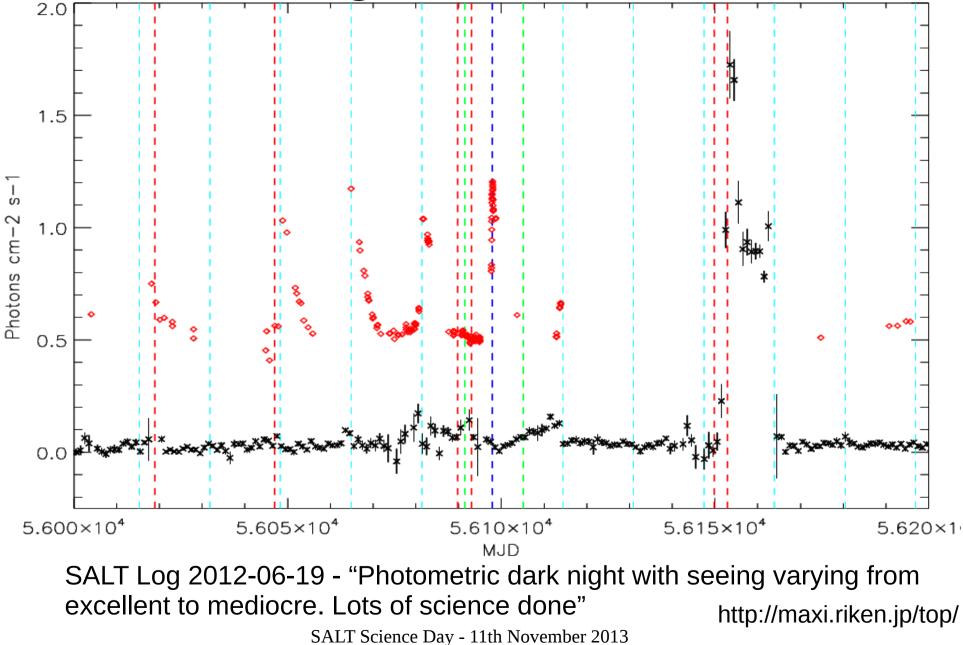


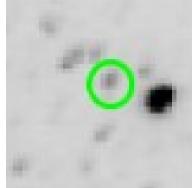

Calvelo et al. 2012

A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7

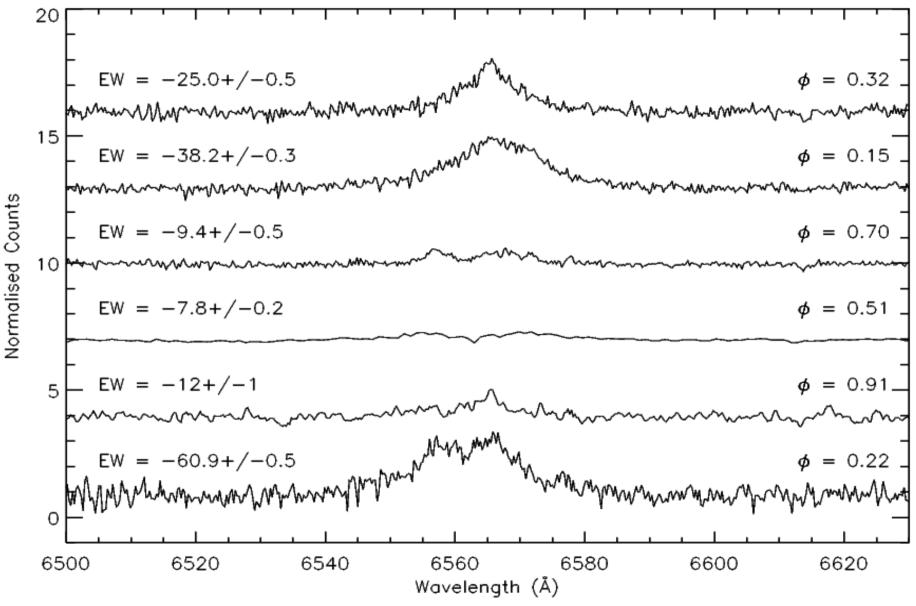
R. P. Armstrong, $^{1,2}\star$ R. P. Fender, 2,3 G. D. Nicolson, ⁴ S. Ratcliffe, ¹ M. Linares, ⁵ J. Horrell, ¹ L. Richter, ¹ M. P. E. Schurch, ² M. Coriat, 2,3 P. Woudt, ² J. Jonas, ^{1,6} R. Booth^{1,6} and B. Fanaroff¹

- Clear spectral evolution from +2.0 to -0.5.
- Typical of synchrotron-flaring sources (van der Laan, 1966).
- Outbursts peaks later and less energetically at given frequency.
- X-ray Radio relationship is complex.
 - Linked to variations in accretion rate?
 - Or precession of disk/jet?

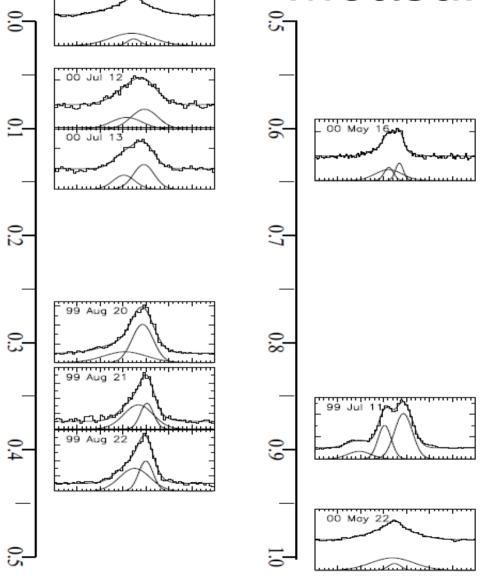



The Big Campaign 11th – 26th June 2012

Light Curves



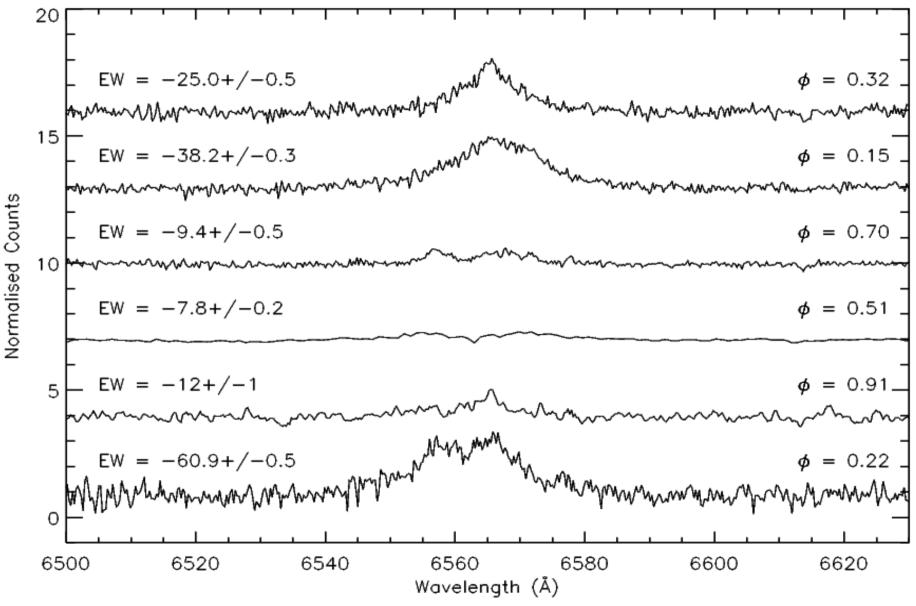
SALT Observations


- ToO time assigned to program
 2011-3-RSA_UKSA-001 was used to observe Cir X-1.
 - This program was set up to perform high resolution red spectroscopy of X-ray binaries throughout outbursts.
 - 2 epochs during April 2012
- 2012-3-RSA_UKSA-003 Cir X-1 specific proposal.
 - 4 epochs; 2 in June and 2 in August 2012.
- 3x1200s Hα (6160-7000Å) and 1x688s Paschen lines (7925-8980Å). Totalling 46.5ks.
- Grating PG2300 with a slit width of 1.5" producing medium resolution, R=4400 and 5400 spectra.
- Dispersion of 0.13 and 0.16Å per pixel

Hα Emission Line

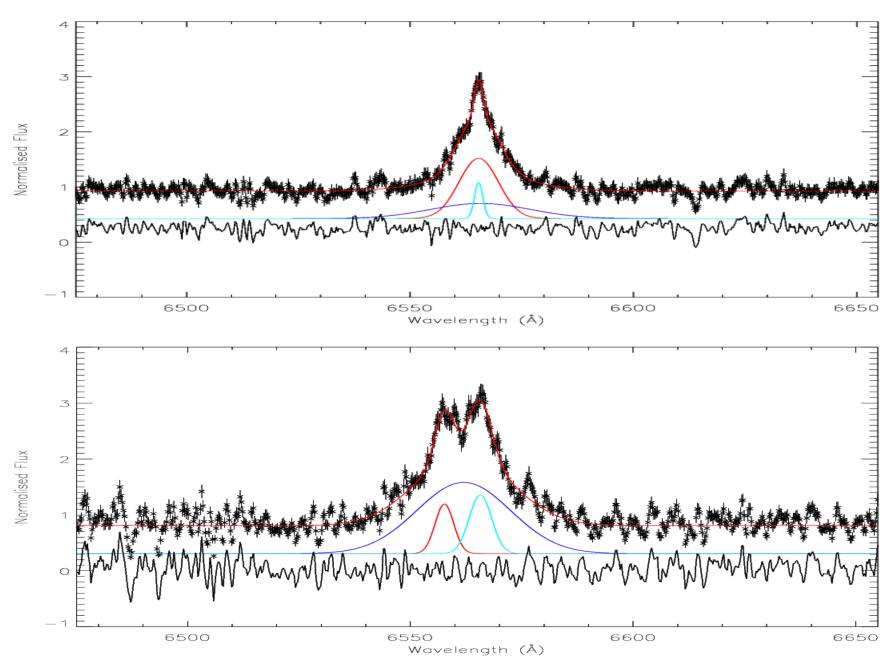
SALT Science Day - 11th November 2013

Historical Hα Emission Measurements


00 May 22,

UT Date	Phase	$W_{\lambda t}$ H $lpha$ (Å)
1999 Jul 11	0.880	81
1999 Aug 20	0.292	80
1999 Aug 21	0.350	79
1999 Aug 22	0.411	83
2000 May 16	0.622	12.2
2000 May 22	0.985	10.1
2000 Jul 12	0.073	25.0
2000 Jul 13	0.129	26.3

Figure 1. Line profiles of H α , showing the Gaussian fits to the lines and their sum. The spectra have been normalized by a polynomial fit to the continuum. The spectra are shown in order of phase, with the spectrum taken at phase 0 (1999 May 22) repeated at phase 1 for clarity. The spectrum at phase 0 is symmetric, with a broad component on the blue wing appearing at phases 0.1–0.5. At phase 0.6 the line appears to be double-peaked (or flat-topped?), while clear double peaks are seen at phase 0.9.


Johnston et al. 2001

Hα Emission Line

SALT Science Day - 11th November 2013

Hα Emission Line Fits

SXP1062

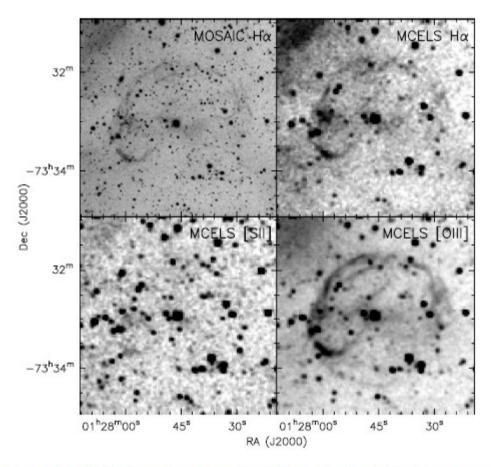
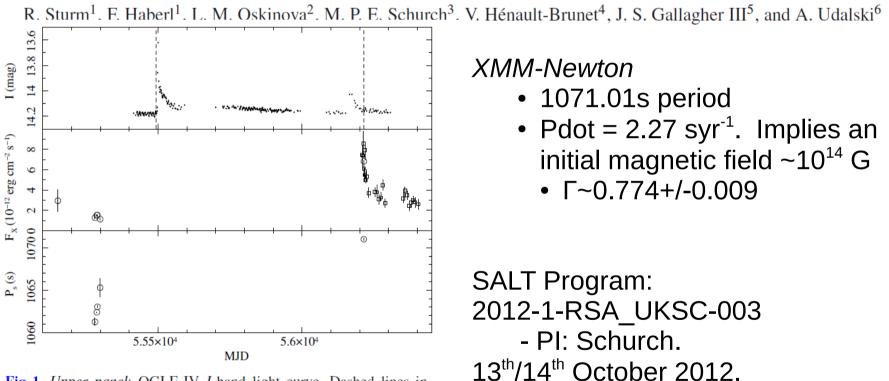


Figure 5. MOSAIC H α image and MCELS H α , [S II] and [O III] images of a region centred on the position of 2dFS 3831 = SXP 1062 and showing the shell nebula detected around the target.

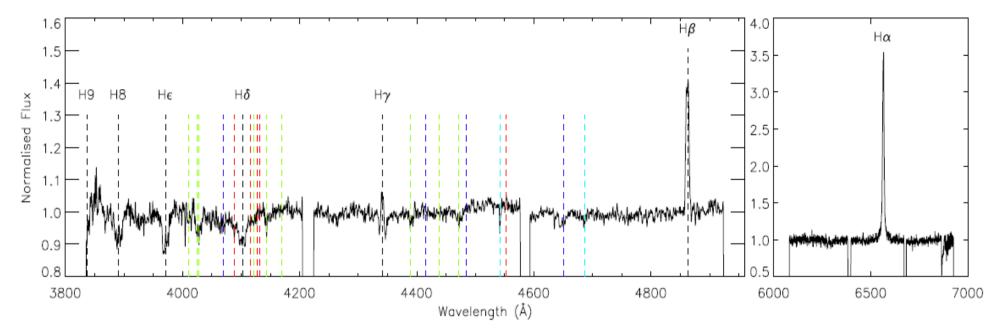
H'enault-Brunet et al. 2012


Chandra detection near NGC602

2dFS 3831 RA = 01:27:46 Dec = -73:32:56P_s = 1062s Pdot_s = 94.9 syr⁻¹

H'enault-Brunet et al. 2012, Haberl et al. 2012, Fu et al. 2012, Popov and Turolla 2012, Ikhsanov 2012. A&A 556, A139 (2013) DOI: 10.1051/0004-6361/201321755 © ESO 2013

Long-term evolution of the neutron-star spin period of SXP 1062^{*,**}


Fig. 1. *Upper panel*: OGLE-IV *I*-band light curve. Dashed lines indicate the time of optical spectroscopy observations. *Middle panel*: X-ray fluxes in the (0.2–10.0) keV band from *Swift* (open squares) and *XMM-Newton* (open circles) including the 2009 slew-survey data and the 2010 measurements. *Lower panel*: NS spin period as measured with *XMM-Newton*.

SALT Science Day - 11th November 2013

2x400s in blue

Observing conditions: 3"

180s in red.

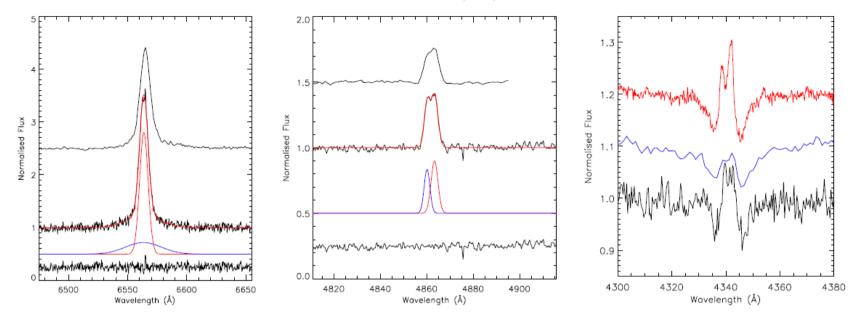

R. Sturm et al.: Long-term evolution of the neutron-star spin period of SXP 1062

Fig. 5. SALT blue and red (*left* and *right* respectively) smoothed spectra of SXP 1062. Clearly visible are the chip gaps between the three CCDs. Dotted lines indicate: Balmer lines (black), He I (green), He II (light blue), Silicon (red) and other metal lines (dark blue).

SALT (Oct 2012) EW_{Ha}= -26.65+/-0.09 Å 2df (Sept 1999) EW_{Ha}= -22.02+/-0.05 Å

SALT (Oct 2012) EW_{Hb}= -2.40+/-0.29 Å 2df (Sept 1998) EW_{Hb}= -1.58+/-0.10 Å

A&A 556, A139 (2013)

Fig. 6. *Left*: H α as seen with SALT (normalised) and according modelling with two Gaussians and continuum. The lowest line gives the residuals. The 2dF spectrum is shown on the top for comparison. *Middle*: same as before, but for H β . *Right*: H γ as seen with VLT FLAMES (top), 2dF (middle) and SALT (bottom).

SALT (Oct 2012) EW_{Ha} = -26.65+/-0.09 Å 2df (Sept 1999) EW_{Ha} = -22.02+/-0.05 Å

SALT (Oct 2012) EW_{Hb}= -2.40+/-0.29 Å 2df (Sept 1998) EW_{Hb}= -1.58+/-0.10 Å

SXP1062 Periodic Outburst?

- Outburst in July 2014?
- Accepted joint Chandra and Swift proposal
 - Swift monitoring will trigger Chandra.
 - 24 x 2ks observations.
 - 120ks Chandra time (4 observations)
- Propose for simultaneous KAT-7 and SALT observations.

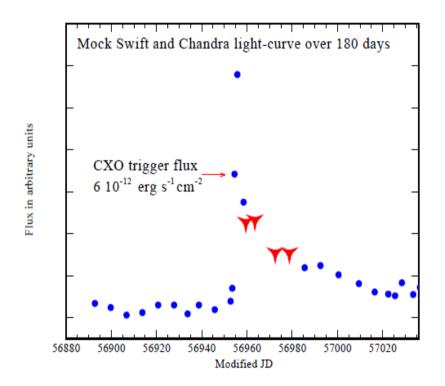


Figure 3: Mock X-ray light-curve to illustrate our observing strategy. *Swift* monitoring is over 24 weeks (2 ks). At flux level 6×10^{-12} *Chandra* observations are triggered with medium response time (red diamonds). The 120 ks *Chandra* observing time can be split on exposures of any duration. *Swift* observations resume afterwords.

Summary

- Circinus X-1
 - Large variation in H α emission line between outburst cycles, but small variation within a single orbit.
 - Consistent with previous observations (Johnston et al., 2001).
 - Full comparison of data with KAT-7 and HartRAO monitoring is still to be done. Should be published early 2014.
- SXP1062
 - Confirmation of spectral type.
 - Basic modelling of circumstellar disk emission lines.
 - 2014 observations planned.