SALT Observations of Circinus X-1 and SXP1062

Matthew Schurch1,
ThunderKAT Multi-wavelength team
1ACGC, University of Cape Town
2Nagoya University

Matthew.schurch@gmail.com
SALT Science Day
North West University – 11th November 2013
Brief History of Cir X-1

- An extremely peculiar X-ray binary.
- Rediscovery of bursting X-ray behaviour in May 2010 (Papitto et al. 2010) confirms Neutron star class binary.
- \(P_{\text{orb}} = \text{MJD}43076.27+16.57913n+0.0000421n^2 \) (HartRAO, George Nicolson). \(e=0.45 \) (Jonker et al. 2007).
- Highly reddened optical counterpart with magnitudes \(V=21.4 \) to \(K=11.0 \).
- Optical counterpart still unclassified possibly 3-5M\(\odot \) subgiant or 10M\(\odot \) supergiant (Jonker et al. 2007).
- Radio jet, inclination angle \(\sim5^\circ \) (Fender and Hendry 2000)
- System is similar to BeXRBs, but with a lower B-field due to non detections of pulsations.

SALT Science Day - 11th November 2013
A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7

R. P. Armstrong,1,2∗ R. P. Fender,2,3 G. D. Nicolson,4 S. Ratcliffe,1 M. Linares,5 J. Horrell,1 L. Richter,1 M. P. E. Schurch,2 M. Coriat,2,3 P. Woudt,2 J. Jonas,1,6 R. Booth1,6 and B. Fanaroff1

• Clear spectral evolution from +2.0 to -0.5.

• Typical of synchrotron-flaring sources (van der Laan, 1966).

• Outbursts peaks later and less energetically at given frequency.

• X-ray – Radio relationship is complex.
 - Linked to variations in accretion rate?
 - Or precession of disk/jet?
The Big Campaign
11th – 26th June 2012
Light Curves

SALT Log 2012-06-19 - “Photometric dark night with seeing varying from excellent to mediocre. Lots of science done”

SALT Science Day - 11th November 2013

http://maxi.riken.jp/top/
SALT Observations

• ToO time assigned to program 2011-3-RSA_UKSA-001 was used to observe Cir X-1.
 – This program was set up to perform high resolution red spectroscopy of X-ray binaries throughout outbursts.
 – 2 epochs during April 2012

• 2012-3-RSA_UKSA-003 Cir X-1 specific proposal.
 – 4 epochs; 2 in June and 2 in August 2012.

• 3x1200s Hα (6160-7000Å) and 1x688s Paschen lines (7925-8980Å). Totalling 46.5ks.

• Grating PG2300 with a slit width of 1.5” producing medium resolution, R=4400 and 5400 spectra.

• Dispersion of 0.13 and 0.16Å per pixel
Ha Emission Line

EW = -25.0+/−0.5 \quad \phi = 0.32

EW = -38.2+/−0.3 \quad \phi = 0.15

EW = -9.4+/−0.5 \quad \phi = 0.70

EW = -7.8+/−0.2 \quad \phi = 0.51

EW = -12+/−1 \quad \phi = 0.91

EW = -60.9+/−0.5 \quad \phi = 0.22

SALT Science Day - 11th November 2013
Historical Hα Emission Measurements

<table>
<thead>
<tr>
<th>UT Date</th>
<th>Phase</th>
<th>$W_{\lambda, H\alpha}$ (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999 Jul 11</td>
<td>0.880</td>
<td>81</td>
</tr>
<tr>
<td>1999 Aug 20</td>
<td>0.292</td>
<td>80</td>
</tr>
<tr>
<td>1999 Aug 21</td>
<td>0.350</td>
<td>79</td>
</tr>
<tr>
<td>1999 Aug 22</td>
<td>0.411</td>
<td>83</td>
</tr>
<tr>
<td>2000 May 16</td>
<td>0.622</td>
<td>12.2</td>
</tr>
<tr>
<td>2000 May 22</td>
<td>0.985</td>
<td>10.1</td>
</tr>
<tr>
<td>2000 Jul 12</td>
<td>0.073</td>
<td>25.0</td>
</tr>
<tr>
<td>2000 Jul 13</td>
<td>0.129</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Figure 1. Line profiles of Hα, showing the Gaussian fits to the lines and their sum. The spectra have been normalized by a polynomial fit to the continuum. The spectra are shown in order of phase, with the spectrum taken at phase 0 (1999 May 22) repeated at phase 1 for clarity. The spectrum at phase 0 is symmetric, with a broad component on the blue wing appearing at phases 0.1–0.5. At phase 0.6 the line appears to be double-peaked (or flat-topped?), while clear double peaks are seen at phase 0.9.

Johnston et al. 2001
Hα Emission Line

EW = $-25.0+/−0.5 \quad \phi = 0.32$

EW = $-38.2+/−0.3 \quad \phi = 0.15$

EW = $-9.4+/−0.5 \quad \phi = 0.70$

EW = $-7.8+/−0.2 \quad \phi = 0.51$

EW = $-12+/−1 \quad \phi = 0.91$

EW = $-60.9+/−0.5 \quad \phi = 0.22$

SALT Science Day - 11th November 2013
Hα Emission Line Fits
SXP1062

Chandra detection near NGC602

2dFS 3831
RA = 01:27:46
Dec = −73:32:56
P_\(s\) = 1062s
Pdot_\(s\) = 94.9 syr\(^{-1}\)

Figure 5. MOSAIC H\(\alpha\) image and MCELS H\(\alpha\), [S \(\text{ii}\)] and [O \(\text{iii}\)] images of a region centred on the position of 2dFS 3831 = SXP 1062 and showing the shell nebula detected around the target. H'enault-Brunet et al. 2012
Long-term evolution of the neutron-star spin period of SXP 1062

XMM-Newton
- 1071.01s period
- $P_{\text{dot}} = 2.27 \text{ syr}^{-1}$. Implies an initial magnetic field $\sim 10^{14} \text{ G}$
- $\Gamma \sim 0.774 +/- 0.009$

SALT Program:
2012-1-RSA_UKSC-003
- PI: Schurch.
13th/14th October 2012.
2x400s in blue
180s in red.
Observing conditions: 3"

Fig. 1. Upper panel: OGLE-IV I-band light curve. Dashed lines indicate the time of optical spectroscopy observations. Middle panel: X-ray fluxes in the (0.2–10.0) keV band from Swift (open squares) and XMM-Newton (open circles) including the 2009 slew-survey data and the 2010 measurements. Lower panel: NS spin period as measured with XMM-Newton.
Fig. 5. SALT blue and red (left and right respectively) smoothed spectra of SXP 1062. Clearly visible are the chip gaps between the three CCDs. Dotted lines indicate: Balmer lines (black), He I (green), He II (light blue), Silicon (red) and other metal lines (dark blue).

SALT (Oct 2012) $EW_{\text{Ha}} = -26.65 \pm 0.09$ Å
SALT (Oct 2012) $EW_{\text{Hb}} = -2.40 \pm 0.29$ Å
2df (Sept 1999) $EW_{\text{Ha}} = -22.02 \pm 0.05$ Å
2df (Sept 1998) $EW_{\text{Hb}} = -1.58 \pm 0.10$ Å
Fig. 6. Left: Hα as seen with SALT (normalised) and according modelling with two Gaussians and continuum. The lowest line gives the residuals. The 2dF spectrum is shown on the top for comparison. Middle: same as before, but for Hβ. Right: Hγ as seen with VLT FLAMES (top), 2dF (middle) and SALT (bottom).

\[
\text{SALT (Oct 2012) } EW_{H\alpha} = -26.65 \pm 0.09 \text{ Å}
\]
\[
\text{2df (Sept 1999) } EW_{H\alpha} = -22.02 \pm 0.05 \text{ Å}
\]

\[
\text{SALT (Oct 2012) } EW_{H\beta} = -2.40 \pm 0.29 \text{ Å}
\]
\[
\text{2df (Sept 1998) } EW_{H\beta} = -1.58 \pm 0.10 \text{ Å}
\]
SXP1062 Periodic Outburst?

- Outburst in July 2014?
- Accepted joint Chandra and Swift proposal
 - Swift monitoring will trigger Chandra.
 - 24 x 2ks observations.
 - 120ks Chandra time (4 observations)
- Propose for simultaneous KAT-7 and SALT observations.

Figure 3: Mock X-ray light-curve to illustrate our observing strategy. Swift monitoring is over 24 weeks (2ks). At flux level 6×10^{-12} Chandra observations are triggered with medium response time (red diamonds). The 120ks Chandra observing time can be split on exposures of any duration. Swift observations resume afterwords.
Summary

• Circinus X-1
 – Large variation in Hα emission line between outburst cycles, but small variation within a single orbit.
 – Consistent with previous observations (Johnston et al., 2001).
 – Full comparison of data with KAT-7 and HartRAO monitoring is still to be done. Should be published early 2014.

• SXP1062
 – Confirmation of spectral type.
 – Basic modelling of circumstellar disk emission lines.
 – 2014 observations planned.