# **Current SALT Programs at Rutgers**

- Thermonuclear Supernovae: SNIa
- Supernova Remnants some with Buckley (RSA)
- Galaxy Dynamics with Williams (RSA)
- High redshift (z=2) star-forming galaxies  $\frac{\text{with Gronwall}}{(\text{HET})}$
- ACT clusters, mm-band sources with Hilton & Moodley (RSA)
- Herschel/ATLAS lenses with Leeuw (RSA)
- RESOLVE with Kannappan (UNC)



test SN la explosion models with early-time + late-time spectroscopy of the same object (e.g., SN 2012fr)



Viraj Pandya (Rutgers undergrad) RSS-longslit homegrown pipeline reductions

looking at connection between early time line velocities and late-time nebular line velocities



#### Calibrated Spectrum (SN 2013aa)



we also did this for SN 2013aa, with REU student Yssavo Camacho (Lehigh)

data match Maeda et al. (2010) trends from asymmetric explosion model





Dust #10.

S[2.0 mm]:

S[1.5 mm]:

2.3

1.11 mJy

1.59 mJy

alpha:

Dust #6

S[2.0 mm]:

S[1.5 mm]:

2.3

5.51

12.61 mJy

alpha:

distant dusty sources from ~50 deg<sup>2</sup>. All sources S<sub>1.5mm</sub> > 10 mJy show lensing candidates. Measure lens redshifts with RSS.





Ephemeris of SALT Spectroscopic Observations

| Target Name                                                                                                              | RSS Obs $Mode^1$                                                                                                 | Obs Date                                                                         | UTC start                                                                                      | Exp time (s)                                                                   |  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| SPT-S J052903-5436.6<br>SPT-S J055138-5058.0<br><br>SPT-S J051116-5341.9<br>SPT-S J052850-5300.3<br>SPT-S J053310-5453.3 | LS-PG900-2" slit<br>MOS-PG900-1" slitlet<br><br>LS-PG900-2" slit<br>MOS-PG900-1" slitlet<br>MOS-PG900-1" slitlet | 2012-02-13<br>2013-02-04<br>2013-02-12<br>2011-12-06<br>2013-03-04<br>2013-03-13 | $\begin{array}{c} 21:30:24\\ 22:13:28\\ 21:48:53\\ 01:08:50\\ 20:08:32\\ 19:48:18 \end{array}$ | $ \begin{array}{r} 652 \\ 840 \\ 1047 \\ 2390 \\ 2080 \\ 2080 \\ \end{array} $ |  |

<sup>1</sup> Long slit (LS) observations were obtained under program 2011-3-RU-015 (PI: Amruta Deshpande); multi-object spectra (MOS) were from program 2012-2-RU-005 (PI: John P. Hughes).

SALT Spectroscopic Results

| Target Name                                  | Galaxy Id                                    | $m_i$                                      | redshift                                                                                   | R                                         | sp. type     |
|----------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|--------------|
| SPT-S J052903-5436.6<br>SPT-S J055138-5058.0 | SCS J052903-543639<br>SCS J055137-505808     | 17.1                                       | $0.1401 \pm 0.0002$<br>0.3614 ± 0.0002                                                     | 15.7                                      | abs          |
| ST 1-5 3033138-3038.0                        | SCS J055137-505805<br>SCS J055137-505805     | 19.4                                       | $\begin{array}{c} 0.3614 \pm 0.0002 \\ 0.3625 \pm 0.0005 \\ 0.0045 \pm 0.0005 \end{array}$ | 4.3                                       | abs          |
| SPT-S J0521116-5341.9                        | SCS J051116 - 534204<br>SCS J051116 - 534154 | $\begin{array}{c} 22.3\\ 21.9 \end{array}$ | $\begin{array}{c} 0.8045 \pm 0.0002 \\ 0.5912 \pm 0.0002 \end{array}$                      | $\begin{array}{c} 6.7 \\ 8.8 \end{array}$ | em<br>em     |
| SPT-S J052850-5300.3<br>SPT-S J053310-5453.3 | SCS J052850-530016<br>SCS J053310-545320     | $18.9 \\ 17.9$                             | $0.4856 \pm 0.0002$<br>$0.4350 \pm 0.0002$                                                 | $\frac{8.8}{8.0}$                         | em+abs $abs$ |
|                                              | SCS J053311-545305                           | 19.1                                       | $0.4349 \pm 0.0003$                                                                        | 5.3                                       | abs          |
| • • •                                        | SUS J053317-545334                           | 18.3                                       | $0.4379 \pm 0.0006$                                                                        | 4.1                                       | abs          |

## RINGS

### RSS Imaging and Spectroscopy Nearby Galaxy Survey



- Left: Velocity map of NGC 2280 produced from SALT RSS Fabry-Pérot imaging. 8' field-of-view.
- Bottom: Model rotation curve fit for NGC 2280.
- Measured systemic velocity: 1861.6 km/s (heliocentric)
- Scale: 1" ~ 136 pc at distance of 28 Mpc.



### RSS Multi-Object UV Spectroscopy of z=2 Star-Forming Galaxies

Caryl Gronwall (PSU/HET), Eric Gawiser (Rutgers), Alex Hagen (PSU Ph.D. student), et al.



Spectrum of galaxy at z = 2.101 (in EHDF-S) obtained in four hours (stack of six 40 minute observing blocks).

Top panel shows observed 2-d spectrum. Bottom panel shows extracted 1-d spectrum. Ly $\alpha$  emission line detected and resolved with  $\Delta v^{-150}$  km s<sup>-1</sup>.

Demonstrates:

-feasibility of studying emission lines in high-z galaxies -ability to stack multiple MOS exposures to increase S/N

Stacking exposures with simple integer shifts, we find S/N  $\propto t^{0.25}$  (instead of optimal  $t^{0.5}$ ).

Now also trying to rectify rotations between exposures.

More sophisticated data reduction and additional observing time should improve the quality of the spectra.

### Redshifts of Massive ACT SZE Clusters

Joint RSA+RU program (2013-1-RSA\_RU-001, 2013-2-RSA\_RU-002)

Team: Matt Hilton, Kavi Moodley, Susan Wilson (UKZN), Brian Kirk, Catherine Cress (CHPC), Steve Crawford (SAAO), Jack Hughes (RU), Felipe Menanteau (Illinois)

Goal: Measure redshifts of cluster galaxies to estimate dynamical mass from velocity dispersion. Clusters come from the Atacama Cosmology Telescope, selected through the Sunyaev-Zel'dovich Effect. Calibrate the  $Y_{SZ}$  vs.  $M_{dyn}$  scaling law to use cluster number counts to constrain cosmology.







# **Current SALT Programs at Rutgers**

- Thermonuclear Supernovae: SNIa
- Supernova Remnants some with Buckley (RSA)
- Galaxy Dynamics with Williams (RSA)
- High redshift (z=2) star-forming galaxies  $\frac{\text{with Gronwall}}{(\text{HET})}$
- ACT clusters, mm-band sources with Hilton & Moodley (RSA)
- Herschel/ATLAS lenses with Leeuw (RSA)
- RESOLVE with Kannappan (UNC)