Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary

Kinematics and stellar populations of dwarf ellipticals in the Fornax cluster.

Jaco Mentz Supervisor: Dr. S.I. Loubser Co-supervisor : Prof R. Peletier

Center for Space Research, North-West University

November 11, 2013

A (10) × A (10) × A (10)

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
•						

Aim

- Long-slit spectral analysis on dEs > compared with MAGPOP and SMAKCED on dwarf galaxies in the Virgo cluster and the Field (Toloba et al. 2009,2011)
- Line-of-sight velocities and velocity dispersions as function of radius > the amount of rotational support as a function of radius inside the galaxy.
- Kinematics modeled with anisotropic Jeans models (Cappellari 2008) > measure dynamical masses > results will be compared with morphological and structural properties (nucleation, diskiness/boxiness, ellipticity)
- Stellar populations characterised as a function of radius within each galaxy using spectral fitting code ULySS > star formation history and rotating + non-rotating dEs formation histories.
- Results of the kinematic and stellar population analysis will be compared with simulations of harassment and tidal stirring and will thus provide insight in the origin of dEs

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
•						

Aim

- Long-slit spectral analysis on dEs > compared with MAGPOP and SMAKCED on dwarf galaxies in the Virgo cluster and the Field (Toloba et al. 2009,2011)
- Line-of-sight velocities and velocity dispersions as function of radius > the amount of rotational support as a function of radius inside the galaxy.
- Kinematics modeled with anisotropic Jeans models (Cappellari 2008) > measure dynamical masses > results will be compared with morphological and structural properties (nucleation, diskiness/boxiness, ellipticity)
- Stellar populations characterised as a function of radius within each galaxy using spectral fitting code ULySS > star formation history and rotating + non-rotating dEs formation histories.
- Results of the kinematic and stellar population analysis will be compared with simulations of harassment and tidal stirring and will thus provide insight in the origin of dEs

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
•						
_						

Aim

- Long-slit spectral analysis on dEs > compared with MAGPOP and SMAKCED on dwarf galaxies in the Virgo cluster and the Field (Toloba et al. 2009,2011)
- Line-of-sight velocities and velocity dispersions as function of radius > the amount of rotational support as a function of radius inside the galaxy.
- Kinematics modeled with anisotropic Jeans models (Cappellari 2008) > measure dynamical masses > results will be compared with morphological and structural properties (nucleation, diskiness/boxiness, ellipticity)
- Stellar populations characterised as a function of radius within each galaxy using spectral fitting code ULySS > star formation history and rotating + non-rotating dEs formation histories.
- Results of the kinematic and stellar population analysis will be compared with simulations of harassment and tidal stirring and will thus provide insight in the origin of dEs

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
•						

Aim

- Long-slit spectral analysis on dEs > compared with MAGPOP and SMAKCED on dwarf galaxies in the Virgo cluster and the Field (Toloba et al. 2009,2011)
- Line-of-sight velocities and velocity dispersions as function of radius > the amount of rotational support as a function of radius inside the galaxy.
- Kinematics modeled with anisotropic Jeans models (Cappellari 2008) > measure dynamical masses > results will be compared with morphological and structural properties (nucleation, diskiness/boxiness, ellipticity)
- Stellar populations characterised as a function of radius within each galaxy using spectral fitting code ULySS > star formation history and rotating + non-rotating dEs formation histories.
- Results of the kinematic and stellar population analysis will be compared with simulations of harassment and tidal stirring and will thus provide insight in the origin of dEs

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
•						
_						

Aim

- Long-slit spectral analysis on dEs > compared with MAGPOP and SMAKCED on dwarf galaxies in the Virgo cluster and the Field (Toloba et al. 2009,2011)
- Line-of-sight velocities and velocity dispersions as function of radius > the amount of rotational support as a function of radius inside the galaxy.
- Kinematics modeled with anisotropic Jeans models (Cappellari 2008) > measure dynamical masses > results will be compared with morphological and structural properties (nucleation, diskiness/boxiness, ellipticity)
- Stellar populations characterised as a function of radius within each galaxy using spectral fitting code ULySS > star formation history and rotating + non-rotating dEs formation histories.
- Results of the kinematic and stellar population analysis will be compared with simulations of harassment and tidal stirring and will thus provide insight in the origin of dEs

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
•						

Aim

- Long-slit spectral analysis on dEs > compared with MAGPOP and SMAKCED on dwarf galaxies in the Virgo cluster and the Field (Toloba et al. 2009,2011)
- Line-of-sight velocities and velocity dispersions as function of radius > the amount of rotational support as a function of radius inside the galaxy.
- Kinematics modeled with anisotropic Jeans models (Cappellari 2008) > measure dynamical masses > results will be compared with morphological and structural properties (nucleation, diskiness/boxiness, ellipticity)
- Stellar populations characterised as a function of radius within each galaxy using spectral fitting code ULySS > star formation history and rotating + non-rotating dEs formation histories.
- Results of the kinematic and stellar population analysis will be compared with simulations of harassment and tidal stirring and will thus provide insight in the origin of dEs

Properties of dEs

- dEs > small, low luminosity galaxies > $M_B \ge -18$ mag.
- Most numerous galaxy > found in groups and clusters of galaxies
- Low surface brightness > time consuming spectroscopy + small data sets
- Structurally very different form luminous ellipticals > different formation histories
- Low metallicities compared to solar metallicity

Properties of dEs

- dEs > small, low luminosity galaxies > $M_B \ge -18$ mag.
- Most numerous galaxy > found in groups and clusters of galaxies
- Low surface brightness > time consuming spectroscopy + small data sets
- Structurally very different form luminous ellipticals > different formation histories
- Low metallicities compared to solar metallicity

Properties of dEs

- dEs > small, low luminosity galaxies > M_B ≥ −18 mag.
- Most numerous galaxy > found in groups and clusters of galaxies
- Low surface brightness > time consuming spectroscopy + small data sets
- Structurally very different form luminous ellipticals > different formation histories
- Low metallicities compared to solar metallicity

Properties of dEs

- dEs > small, low luminosity galaxies > M_B ≥ −18 mag.
- Most numerous galaxy > found in groups and clusters of galaxies
- Low surface brightness > time consuming spectroscopy + small data sets
- Structurally very different form luminous ellipticals > different formation histories
- Low metallicities compared to solar metallicity

Properties of dEs

- dEs > small, low luminosity galaxies > M_B ≥ −18 mag.
- Most numerous galaxy > found in groups and clusters of galaxies
- Low surface brightness > time consuming spectroscopy + small data sets
- Structurally very different form luminous ellipticals > different formation histories
- Low metallicities compared to solar metallicity

Properties of dEs

- dEs > small, low luminosity galaxies > M_B ≥ −18 mag.
- Most numerous galaxy > found in groups and clusters of galaxies
- Low surface brightness > time consuming spectroscopy + small data sets
- Structurally very different form luminous ellipticals > different formation histories
- Low metallicities compared to solar metallicity

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
		•				

Fornax cluster

- Southern cluster with the second largest collection of early-type galaxies $\leq 20\,$ Mpc.
- Galaxy density higher than Virgo cluster and more concentrated than Virgo
- ACSFCS survey (Jordan et al. 2007) > target selection
- Early type dwarfs, FCC targets (Ferguson, 1989) > morphological classification (dE), 13.3 ≥ b_t ≤ 15.6, ellipticity » 20 targets

Property	Virgo	Fornax
Richness class	1	0
r _c (Mpc)	≈ 0.6	≈ 0.25
Mass	$(4-7) \times 10^{14}$	$(7 \pm 2) \times 10^{13}$
Distance	16.5	19.3
Ν	1170	235
$\sigma_{ m v}$ (km s $^{-1}$)	760	347 ± 26

Table : Properties of Virgo and Fornax clusters (Jordan et al 2007).

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
		•				

Fornax cluster

- Southern cluster with the second largest collection of early-type galaxies ≤ 20 Mpc.
- Galaxy density higher than Virgo cluster and more concentrated than Virgo
- ACSFCS survey (Jordan et al. 2007) > target selection
- Early type dwarfs, FCC targets (Ferguson, 1989) > morphological classification (dE), $13.3 \ge b_t \le 15.6$, ellipticity » 20 targets

able :	Properties	of Virgo an	id Fornax	clusters	(Jordan	et al	2007).

Property	Virgo	Fornax
Richness class	1	0
r _c (Mpc)	≈ 0.6	≈ 0.25
Mass	$(4-7) \times 10^{14}$	$(7\pm2)\times10^{13}$
Distance	16.5	19.3
Ν	1170	235
σ_{v} (km s $^{-1}$)	760	347 ± 26

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
		•				

Fornax cluster

- $\bullet~$ Southern cluster with the second largest collection of early-type galaxies $\leq 20~$ Mpc.
- Galaxy density higher than Virgo cluster and more concentrated than Virgo
- ACSFCS survey (Jordan et al. 2007) > target selection
- Early type dwarfs, FCC targets (Ferguson, 1989) > morphological classification (dE), $13.3 \ge b_t \le 15.6$, ellipticity » 20 targets

Tab	le :	Properties	of Virgo	and Fornax	clusters	(Jordan e	et al 2007).
-----	------	------------	----------	------------	----------	-----------	--------------

Property	Virgo	Fornax
Richness class	1	0
r _c (Mpc)	≈ 0.6	≈ 0.25
Mass	$(4-7) \times 10^{14}$	$(7 \pm 2) \times 10^{13}$
Distance	16.5	19.3
Ν	1170	235
$\sigma_{ m v}$ (km s $^{-1}$)	760	347 ± 26

イロト イヨト イヨト イヨト

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
		•				

Fornax cluster

- Southern cluster with the second largest collection of early-type galaxies ≤ 20 Mpc.
- Galaxy density higher than Virgo cluster and more concentrated than Virgo
- ACSFCS survey (Jordan et al. 2007) > sample selection
- Early type dwarfs, FCC targets (Ferguson, 1989) > morphological classification (dE), $13.3 \ge b_t \le 15.6$, ellipticity » 20 targets

Property	Virgo	Fornax
Richness class	1	0
r _c (Mpc)	≈ 0.6	≈ 0.25
Mass	$(4-7) \times 10^{14}$	$(7 \pm 2) \times 10^{13}$
Distance	16.5	19.3
Ν	1170	235
σ_{v} (km s $^{-1}$)	760	347 ± 26

Table : Properties of Virgo and Fornax clusters (Jordan et al 2007).

イロト イポト イヨト イヨト

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
			•			

Observations and data reduction

- Observations > SALT, RSS spectrograph > 7300s per target
- Basic data reduction and calibration of the spectra > IRAF
- Spectral reduction > CR rejection + flat fielding + spectral line ID

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
			•			

Observations and data reduction

- Observations > SALT, RSS spectrograph > 7300s per target
- Basic data reduction and calibration of the spectra > IRAF
- Spectral reduction > CR rejection + flat fielding + spectral line ID

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
			•			

Observations and data reduction

- Observations > SALT, RSS spectrograph > 7300s per target
- Basic data reduction and calibration of the spectra > IRAF
- Spectral reduction > CR rejection + flat fielding + spectral line ID

Jaco Mentz

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
			•			

Observations and data reduction

- Observations > SALT, RSS spectrograph > 7300s per target
- Basic data reduction and calibration of the spectra > IRAF
- Spectral reduction > CR rejection + flat fielding + spectral line ID

Jaco Mentz

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
				•		

Data analysis

Data analysis

- pPXF (Penalized Pixel Fitting (Cappellari (2002)) > evaluate stellar kinematics by fitting line-of-sight velocity distribution and determines kinematics of gas by measuring emission line fluxes and widths
- GANDALF (Gas AND Absorption Line Fitting) > simultaneously fits stellar population and Gaussian emission line templates to the galaxy spectrum to separate stellar continuum and absorption lines from the ionised gas emission

イロト イヨト イヨト イヨト

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
				•		

Data analysis

Data analysis

- pPXF (Penalized Pixel Fitting (Cappellari (2002)) > evaluate stellar kinematics by fitting line-of-sight velocity distribution and determines kinematics of gas by measuring emission line fluxes and widths
- GANDALF (Gas AND Absorption Line Fitting) > simultaneously fits stellar population and Gaussian emission line templates to the galaxy spectrum to separate stellar continuum and absorption lines from the ionised gas emission

イロト イヨト イヨト イヨト

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
				•		

Data analysis

Data analysis

- pPXF (Penalized Pixel Fitting (Cappellari (2002)) > evaluate stellar kinematics by fitting line-of-sight velocity distribution and determines kinematics of gas by measuring emission line fluxes and widths
- GANDALF (Gas AND Absorption Line Fitting(Sarzi et al. (2006)) > simultaneously fits stellar population and Gaussian emission line templates to the galaxy spectrum to separate stellar continuum and absorption lines from the ionised gas emission

イロト イボト イヨト イヨ

Rotational support

- Rotational curves: Obtained from the ratio of rotational velocity to distance from centre of galaxy > V_{max} derived from rotation curve (Polyex model (Giovanelli & Haynes 2002))
- Velocity dispersion (σ): Dispersion of velocities about the mean velocity inside the galaxy

 > estimated from measuring all radial velocities
- Anisotropy parameter (v_{max}/σ)*: Galaxies are rotational supported for (v_{max}/σ)* > 0.8 and pressure supported for (v_{max}/σ)* < 0.8. Rotational supported systems > cluster outskirts or field

$$V_{PE}(r) = V_0 \left(1 - e^{-\frac{r}{r_{PE}}}\right) \left(1 + \frac{\alpha r}{r_{PE}}\right) \quad \text{as a function of} \quad V_0, r_{PE}, \alpha$$

$$(Toloba et al. 2010)$$

0.4 0.6 r/R_{ord}

Rotational support

- **Rotational curves**: Obtained from the ratio of rotational velocity to distance from centre of galaxy > V_{max} derived from rotation curve (Polyex model (Giovanelli & Haynes 2002))
- Velocity dispersion (σ): Dispersion of velocities about the mean velocity inside the galaxy

 > estimated from measuring all radial velocities
- Anisotropy parameter (v_{max}/σ)*: Galaxies are rotational supported for (v_{max}/σ)* > 0.8 and pressure supported for (v_{max}/σ)* < 0.8. Rotational supported systems > cluster outskirts or field

$$V_{PE}(r) = V_0 \left(1 - e^{-\frac{r}{r_{PE}}}\right) \left(1 + \frac{\alpha r}{r_{PE}}\right) \quad \text{as a function of} \quad V_0, r_{PE}, \alpha$$

$$\int_{\mathbb{Q}} \left(\int_{0}^{\infty} \int_{0}^{0} \int_{0}^$$

Project Outline	Dwarf elliptical galaxies	Sample selection	Observations and data reduction	Data analysis	Kinematics	Summary
					•	

Rotational support

- Rotational curves: Obtained from the ratio of rotational velocity to distance from centre of galaxy > V_{max} derived from rotation curve (Polyex model (Giovanelli & Haynes 2002))
- Velocity dispersion (σ): Dispersion of velocities about the mean velocity inside the galaxy
 > estimated from measuring all radial velocities
- Anisotropy parameter (v_{max}/σ)*: Galaxies are rotational supported for (v_{max}/σ)* > 0.8 and pressure supported for (v_{max}/σ)* < 0.8. Rotational supported systems > cluster outskirts or field

イロト イボト イヨト イヨト

Rotational support

- Rotational curves: Obtained from the ratio of rotational velocity to distance from centre of galaxy > V_{max} derived from rotation curve (Polyex model (Giovanelli & Haynes 2002))
- Velocity dispersion (σ): Dispersion of velocities about the mean velocity inside the galaxy

 > estimated from measuring all radial velocities
- Anisotropy parameter $(v_{max}/\sigma)^*$: Galaxies are rotational supported for $(v_{max}/\sigma)^* > 0.8$ and pressure supported for $(v_{max}/\sigma)^* < 0.8$. Rotational supported systems > cluster outskirts or field

$$(v_{max}/\sigma)^* = \frac{v_{max}/\sigma}{\sqrt{\epsilon/(1-\epsilon)}}$$
 with $\sqrt{\epsilon/(1-\epsilon)}$ the isotropic oblate model

(Toloba et al. 2009)

イロト イボト イヨト イヨト

•						
o Project Outline	Owart elliptical galaxies	Sample selection	Observations and data reduction	Data analysis O	C NINEMATICS	Summary ●
	Design of the second second second second					O O O O O O O O O O

Summary

- Longslit spectra from SALT will be used to study dEs in Fornax cluster.
- Stellar population data and kinematics of 20 dEs will be obtained and compared to dEs in other clusters (Virgo).
- Fornax contains slow rotating dEs > Why? > Look at the cluster environment.
- Answer fundamental questions about dE formation and star formation histories in dEs > metallicity gradients in dEs

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト