
SALT
scheduling software

Brent Miszalski
SALT Research Fellow

brent@saao.ac.za

mailto:brent@saao.ac.za
mailto:brent@saao.ac.za

HA tool
interactive
web page

filters
similar to

OPT

live science
database
queries

SALT scheduling
software requirements

• Create a basic queue based on observing conditions
and input date

• Prefill with P0 (P1?) and time critical blocks

• Populate with other blocks that minimise idle time

• Modular - plug in optimal scheduling algorithm

• Planning - reuse code to simulate a semester

• Good level of block display and interaction

requirements (cont)
• Address a number of issues not easily done now

• Be aware of moon illum fraction and moon rise/
set during night

• If time critical or P0 or ToO, ignore moon

• If proposal is time critical and one block already
observed, bump up in priority or highlight it

• Go to blocks at right time (need to know best
windows, crucial for MOS, equatorial tracks)

• Aware of calibration time AFTER science in
blocks

Work done so far

• Test application written to read in block
info (SQL query dumped to FITS table)

• Aim: display blocks using native Python date
format and matplotlib

• PyEphem module used for twilight times,
moon rise/set/illumfrac at Sutherland

• Times stored in Python DateTime format

P0
P1
P2
P3

sorted by East
track start time

Progress on Scheduler

• Now at point where we can start to
implement a basic queue! hooray!

• Progress:

• Matplotlib display of queue for a night!

• SubBlock python class functional

• Moon handled properly now (except lunar
illum calc is a bit off)

• N.B. Code is still very much in a simple state
and not all bells and whistles have been
added => Focus is to get main stuff working

Sub Block
• Initially tried to have a Block class that

included all time windows (east AND west
track), but this became way too complicated
(different moons encountered by different
tracks)

• Simplified to SubBlock - only defined by a
single time window (e.g. a window you can
point to object and have enough track to
complete the ObsTime)

• Things now work very well! Though in
queue will have to keep track of other
subblocks with same BlockID (can use
references to other SubBlocks)

Queue me up
• Current test program just has a simple list of

P1,P2, P3 blocks

• Activate/Choose a random subblock and then
go through all other subblocks

• If they don’t overlap with already active
blocks, activate new subblock

• Display queue in matplotlib

• Immediate next steps:

• Get a basic optimisation going (e.g. simulated
annealing) and explore randomisation steps

Queue class

• Basic implementation in place

• Need a container class for the queue that stores
individual Block class instances

• Queue itself: for now, a Python list

• May be sufficient for queue randomisation

• Could make use of helper priority queues (e.g. in the
form of a heap)

• May need a way to select ‘best’ block in a given time
interval for many intervals in the night

Block display examples
(not an optimisation at all)

blocks
are

clickable
=> go to

WM
proposal

page

P1
P2
P3

Queue randomisation
Visibility Window

can point to block any time in this window where
TrackTime > ObsTime

ObsTime
time needed to observe block,
minus calibrations at the end

Next step: Implement simulated annealing
algorithm with randomisation steps

works well with priorities
 (e.g. Miszalski et al. 2006)

MOS field config by simulated annealing
Miszalski et al. 2006, MNRAS, 371,1537

2dF on AAT
400 fibres

complex
optimisation

 problem

9 target priorities
P1 (low) to P9 (hi)

Objective function

Randomisation steps

Priority distribution

Simulated annealingOxford algorithm

