

How big is the Solar System?

If Sun were a grape fruit (10 cm):

Earth, a grain of sand Jupiter, a marble Pluto, a tiny grain of sand 0.2mm, 700 m away

1mm, 15 m away 1.5cm, 80 m away

And the NEXT CLOSEST sun (or star) would be in ...

If Sun were a grape fruit (10 cm):

Earth, a grain of sand Jupiter, a marble Pluto, a tiny grain of sand 0.2mm, 700 m away

1mm, 15 m away 1.5cm, 80 m away

And the NEXT CLOSEST sun (or star) would be in ... Nairobi!

If Sun were a grape fruit (10 cm):

..the Sun would be only one of hundreds of billions of other stars (like sand grains on a beach) in one galaxy, which would span over 60 million kilometres.

And then there are hundreds of billions of galaxies ... in the known Universe ...

 $E = m c^2$

The sun loses 4.3 million tons of its mass every second.

Right Ascension and Declination

North Celestial Pole

RA and DEC form the universal coordinate systems used in astronomy

RA is measured East of the Vernal Equinox point in HOURS

DEC is measured North of the Celestial Equator in DEGREES.

e.g. Sirius is at

- RA = 6h 45m 28s
- DEC = -16° 43' 36"

South Celestial Pole

Stars are born, they live, and grow old

X Starlink GAIA::Skycat: mbxgpS201402110025.fits (1) <u>H</u>elp <u>F</u>ile <u>V</u>iew <u>I</u>mage-Analysis Data-Servers **G**raphics Object: mbxgpS201402110025.fits[2] X: 671.0 Y: 1143.0 Value: 1214.22 a: 1344 δ: 2288 Equinox: Min: -8.88580513000488 Max: 159021.171875 Auto Cut: High: 3865.89 Low: 750 Color Map: Intensity Map: Scale: 1/2x **▼** Zoom i image: = select object, → = scroll image, → = measure WCS, Control → = select region

NGC

3582

Trifid Nebula/Messier 20
NASA / JPL-Caltech / J. Rho (SSC/Caltech)

Spitzer Space Telescope • IRAC + MIPS
ssc2005-02a

YOUNG STARS

AND OLD STARS

DYING STARS

Planetary Nebula NGC 3132

Planetary Nebula NGC 3132

PRC98-39 • Space Telescope Science Institute • Hubble Heritage Team

Life of a Sun-like star

Protostar

SUPERNOVA

SN 1987A

Crab Nebula – remnant of supernova seen on the sky 1054 AD

Milky Way – our Galaxy

Centre of Milky Way

Centre of Milky Way

 Super-massive Black hole of ~4x10⁶ Solar mass

1992 10 light days

LOOKING INTO THE DEPTHS
OF TIME AND SPACE

We are looking back in time!

- Jan 1 THE BEGINNING
- April our Galaxy
- Sep Sun and Earth formed

- Jan 1 THE BEGINNING
- April our Galaxy
- Sep Sun and Earth formed

- DEC 1 Oxygen atmosphere
- 23 First trees, reptiles on land
- 25 Dinosaurs in
- 26 Mammals
- 29 Dinosaurs out

- Jan 1 THE BEGINNING
- April our Galaxy
- Sep Sun and Earth formed

- DEC 1 Oxygen atmosphere
- 23 First trees, reptiles on land
- 25 Dinosaurs in
- 26 Mammals
- 29 Dinosaurs out

- DEC 31, 23h00 Homo Sapiens
- 23:56 latest Ice Age
- 23:59:20 agriculture
- 23:59:50 Egypt, Sumer
- 23:59:56 Jesus Christ
- 23:59:59 Renaissance, New World

